IES TM-30-15

What is TM-30-15?

IES TM-30-15 is a document approved by the Illuminating Engineering Society (IES) that describes a method for evaluating light source color rendition. The method provides a comprehensive characterization of how the light will affect the color appearance of objects. It takes into account gamut, whilst expanding fidelity to 99 colour swatches.

CES 1	CES 2	CES 3	CES 4	CES 5	CES 6	CES 7	CES 8
CES 9	CES 10	CES 11	CES 12	CES 13	CES 14	CES 15	CES 16
CES 17	CES 18	CES 19	CES 20	CES 21	CES 22		CES 24
CES 25	CES 26	CES 27	CES 28	CE5-29	CES 30	CES 31	CE5 32
CE5 33	CES 34	CES 35	CES 36	CES 37	CES:38	CES 39	CES 40
CES-41	CES 42	CES 43	CES 44	CES 45	CES 46	CES 47	CE5 48
CES 49	CES 50	CES 51	CES 52	CES 53	CE5 54	CES 55	CE5 56
CES 57	CES 58	CES 59	CE5 5 0	CES 61	CES 62	CES 63	CES 64
CES 65	CES 66	CES 67	CES 68	CES 69	CES 70	CES 71	CES 72
CES 73	CES 74	CES 75	CE5 76	CES 77	CES 78	CES 79	CES 80
CES 81	CES 82	CES 83	CES 84	CES 85	CES 86	CES 87	CES 88
CES 89	CES 90	CES 91	CES 92	CES 93	CES 94	CES 95	CE5.96
CES 97	CES 98	CES 99					

What are the main indices?

This system uses three highest-level indices to character the color appearance of objects: Fidelity Index (R_f), Gamut Index (R_g), and Color Vector Graphic.

Fidelity Index (R_f)

Fidelity Index (R_f) measures how 99 color samples are rendered by test source and the reference illuminant and uses average values to rate the color fidelity. It ranges from 0 to 100, with 100 indicating an exact match with the reference illuminant. For architectural interiors, values below 60 are not typically considered appropriate.

R_f=93

Gamut Index (Rg)

Gamut Index (R_g) measures average level of saturation relative to the reference illuminants. First, 99 color evaluation samples are divided into 16 bins. In each bin, all samples are averaged to generate one vertex. Connecting all vertices, one 16-sided polygon is generated. Gamut index is the ratio of the area of test and reference polygon. R_g ranges approximately from 60 to 140.

R_f=93 Rg=90 R_f=78 $R_g = 110$

Color Vector Graphic

Color Vector Graphic shows the color differences (hue and saturation) between test light sources and the reference illuminant. The black circle represents the reference illuminant, and the red circle represents the test light source.

Color Vector Graphic

JOYO<mark>lIG</mark>Ht</mark>

Actually, the Color Vector Graphic could show more information related to color rendition, like a shift in or out of the circle represents oversaturation or under-saturation and a shift around the circle means a hue shift (a particular color appears more like another color).

Original

Desaturated

Red-Enhanced

What are other useful indices?

Except above three main indices, some other indices are also useful in the commercial industry.

Sample Fidelity Indices (R_{f,CESi}, i=1-99)

The system could calculate the fidelity value for each 99 color evaluation sample.

Skin Fidelity Index (R_{f, skin})

R_{f, skin} indicates how similarly a given light source will render skin tones to the reference illuminant, which is more concerned in the commercial industry.

Hue Fidelity Indices (R_{f,h#}, #=1-16)

Similar to fidelity index R_f , a fidelity value can be calculated based on the samples in each hue angle bin, named as Hue Fidelity Indices ($R_{f,h\#}$). They provide more detailed information than the average fidelity index, potentially providing information that is more relevant to a specific application.

Chroma Change by Hue Indices (R_{cs,h#}, #=1-16)

Chroma Change by Hue Indices provides numerical values for relative chroma change in each of 16 hue bins. The values are percentages, with the sign indicating whether chroma is increased or decreased.

A measure similar to CIE R9

The single sample with fidelity values that are most correlated with CIE TCS 09—used to calculate CIE R9 is CES07